
8. Genetic Programming

for Workload Balancing

in the Comcute Grid System

Jerzy Balicki, Waldemar Korłub, Jacek Paluszak, Artur Zacniewski*

Gdańsk University of Technology

Faculty of Electronics, Telecommunications and Informatics

Computer System Architecture Department

e-mail: balicki@eti.pg.gda.pl, stawrul@gmail.com, jacekpaluszak@gmail.com

*The Naval University of Gdynia

e-mail: a.zacniewski@amw.gdynia.pl

Abstract

In this chapter, a genetic programming paradigm is implemented for reliability

optimization in the Comcute grid system design. Chromosomes are generated as

the program functions and then genetic operators are applied for finding

Pareto-suboptimal task assignment and scheduling. Results are compared with

outcomes obtained by an adaptive evolutionary algorithm.

Keywords: grid computing, parallel programming, volunteer computing,

genetic algorithm, workload balancing

8.1. Introduction

In the Comcute system, several tasks are performed concurrently by three
ordered levels of the support software modules. This middleware consists of
some modules that are dedicated to different system nodes. So, the question is
how assign system modules to nodes to obtain some advantages for the whole
grid [7].

A workload balancing and the total cost of a program run in a grid computer
like the Comcute may be reduced by the task assignment and the scheduling [1].
Moreover, it is possible to decrease the cost of computers if a selection of the
computer sort is carried out. A total amount of the system performance is
another measure that can be minimized by task distribution and scheduling [16].

The probability that all computers remain fault-free during the execution of the
modules assigned to computers is important criterion of evaluation task

assignments. In real-time systems that are preferred for some anti-crisis
dilemmas, a required time of response is supposed to be guaranteed. In this
case, time precedence between concurrent tasks play important role. Therefore,
the second important criterion is the probability that tasks are completed on
time.

A problem of task allocation can be formulated as a multiobjective
combinatorial optimization question, which is solved by an approach based on
genetic programming. It is applied for finding the subset of Pareto-optimal
solutions.

Genetic algorithms, evolutionary algorithms, evolution strategies and genetic
programming are the alternative evolutionary approaches to the modern
metaheuristic multicriteria optimization methods such as simulated annealing,
tabu search or Hopfield models of neural networks. Evolutionary calculations
deal simultaneously with a population of possible solutions, which allows
finding a subset of Pareto optimal solutions by one algorithm run, instead of
having to perform a number of separate runs of standard multiobjective
optimization techniques. Moreover, evolutionary approaches give outcomes
with good quality for different instances of multiobjective problems and can be
considered as a robust optimization technique. From these reasons evolution
approaches are convenient if we look for the subset of Pareto-optimal solutions.

8.2. Genetic programming rules

Genetic programming is a remarkable paradigm of an artificial intelligence.
A theory of genetic programming has been created by John R. Koza of the
Computer Science Department of Stanford University [14]. Solutions to several
problems have been found for instances from different areas like optimal
control, planning, sequence induction, symbolic regression, automatic
programming or discovering a game playing strategy. Furthermore, problems
related to empirical discovering and forecasting, symbolic integration or
differentiation, discovering mathematical identities, classification and decision
tree induction, evolution of emergent behavior and also automatic programming
of cellular automata are on the list of problems that have been solved
successfully by genetic programming [17].

Although, several different problems have been taken into account, finding task
assignment by genetic programming is a new scientific challenge [18]. Fig. 8.1
shows an example of a tree of the computer program performance.

This tree corresponds to the program written in the LISP language, as follows:

(LT (+ –3 x) (* v (SQRT v)))

Fig. 8.1. Tree as a model of the computer program

Above program calculates both the value –2x and vv , and then compare –2x

to vv . If –2x is smaller than vv , then an outcome of the LISP procedure

is equal to 1. In the other case, the result is –1, because the function LT is
defined in such a way.

This tree is equivalent to the parse tree that most compilers construct internally
to represent the given computer program. If a computer program was
represented by any algorithm diagram, genetic operators like reproduction,
crossover or mutation would be difficult to implementation. That is, a tree is
a relevant model of chromosome that can be transformed by removing a sub-
tree or exchanging two sub-trees.

Despite the data structure represents a chromosome in an evolutionary
algorithm [11], a chromosome for genetic programming is the tree of
a computer program. The simplest procedure differs from a complex data
structure significantly. The procedure can be used to calculation that gives
ability to represent not only knowledge about a problem and also it gives
possibility to draw conclusions or to process data in the way difficult to
discover. That is, a computer program may find a solution to the problem and
a genetic algorithm without an aid of computer programmer can be able to
construct this procedure.

Generation of the trees is an important step for finding Pareto-optimal task
assignments. The size of the generated tree is supposed to be limited by the
number of nodes or by the number of the tree levels. The tree nodes are divided
on functional nodes and terminal ones. A functional node represents an

SQRT

 LT

 + *

v

 v x -3

elementary procedure randomly chosen from the primary defined set of
functions:

{ }Nn fff ,...,,...,1=F

(1)

Each function should be able to accept, as its arguments, any value and data
type that may possible be returned by the other procedure [2]. Because
a procedure is randomly chosen from the set, and then it is returned, each
function ought to be able to accept, as its arguments, any value and data type
that may possible be returned by itself, too. Moreover, each procedure is
supposed to be capable to allow any value and data type that may possible be
assumed by any terminal selected from the following terminal set:

{ }Mm aaa ,...,,...,1=T

(2)

An above property of the procedure is called a closure property because each
function should be well defined and closed for any arrangement of arguments
that it may come across.

Another property of a set of procedures, called the sufficiency property, requires
that the solution to the problem should be expressed by the any combination of
the procedures from the set of functions and the arguments from the set of

terminals. For example, the set of functions { }NOTORAND ,,=F is

sufficient to articulate any Boolean function. If the logical operator AND is
removed from this set, the remaining procedure set is still satisfactory for

realizing any Boolean function. In addition, a sufficient set is { }NOTAND ,
 as

well.

8.3. Computer and channel failures in a grid system

We assume that computers and communication channels may failure during
data processing. The fault-tolerant system is able to deal with failures of its
elements during the execution of task modules assigned to computers and for
the generated communication. Each computer and each link between them are
assumed to fail independently with exponential rates. We do not take into
account of repair and recovery times for failed computers in assessing the
logical correctness of an allocation. Instead, we shall allocate modules to
computers on which failures are least likely to occur during the execution of
task modules. That is, we are supposed to assign modules with maximum
reliability and thus eliminate the need of on-line repair and recovery.

To guard against the unlikely failures of these computers, one can assign copies
of a module to multiple computers, but this subject is not the scope of this
paper. The rationale behind the above assumption is that repair and recovery
times are largely implementation-dependent. Moreover, repair and recovery

routines usually introduce too high time overheads to be used on-line for time-
critical applications.

A set of program modules {M1,...,Mm,...,MM} communicated to each other’s is
considered among the coherent computer network with computers located at the

processing nodes from the set },...,,...,{
1 Ii

wwwW = . A program module

can be activated several times during the program lifetime and with the program
module runs are associated some processes (tasks). In results, a set of program
modules is mapped into the set of parallel performing tasks {T1,...,Tv,...,TV}.

Let the task Tv be executed on computers taken from the set of available

computer sorts },...,,...,{ 1 Jj πππ=Π . The overhead performing time of the

task Tv by the computer πj is represented by vjt . Let a computer jπ be failed

independently due to an exponential distribution with rate jλ . The longer time

of task execution, the higher probability of computer failure. Computers can be
allocated to nodes and also tasks can be assigned to them in purpose to
maximize the reliability function R defined, as below [2]:

),exp()(
1 1 1

∏∏∏
= = =

−=

V

v

I

i

J

j

ij
m
vivjj xxtxR

π

λ

(3)

where





=
 , the toassigned is if1

case.other thein0
iwj

ijx
π

π



=

, toassigned is taskif1

case,other thein0
iwvTm

vi
x

),(π

xx
m

.],...,,...,,...,,...,,...,,,...,,...,,...,[1111111

T
IJIjIijJ

m
VI

m
vi

m
I

m
xxxxxxxxxx
ππππππ

=

A computer can be chosen several times from the set Π to be assigned to the
node wi and one computer is allocated to each node. On the other hand, each
task is allocated to any node.

Fig. 8.2 shows a relation between the reliability Rj of computer and parameter
λj.=0.001 [TU-1, TU – time unit].

Fig. 8.2. Reliability of an individual computer node

If there are two computer nodes with λ1.=0.001 [TU-1] and λ2.=0.002 [TU-1], the
reliability of the two-computer system decreases faster than the reliabilities for
each of them. Fig. 8.3 shows the relation between the measure of system
reliability R and time of using this system for the chosen two-computer system.

Fig. 8.3. The reliability of the two-computer system

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rj

time [TU]

R

time [TU]

λ1

λ2

λ1&λ2

8.4. Probability of deadline meetings for the tasks

The precedence constraints among modules are figured in calculation of module
release time and the timing constraints on modules are considered then
probability PD that all tasks meet their deadlines is evaluated. If a task misses its
deadline under the given allocation modules, then this probability is equal to
zero.

Let the distributed program Pn may begin its running after λn and complete

before δn. A task flow graph characterizes the logical structure of program
performance. The precedence constraints among modules and the timing
constraints can be presented on the task flow graph. Fig. 8.4 shows an example
of the task flow graph for two programs divided on five modules.

Fig. 8.4. The task flow graph for two programs divided on five modules

Task m2 is performed with the probability q in a sub-graph denoted as OR
(Fig. 4) and task m3 – with the probability (1-q). Task may be performed at the
most Lmax times in a sub-graph denoted as Loop, and each repetition of this
module is performed with the probability p.

The task flow graph is split on some instances to schedule tasks if the sub-graph
OR appears. For example, the first instance incorporates the module m2 instead
the sub-graph OR and this instance emerges with frequency q. The second
instance incorporates the module m3 instead the sub-graph OR and it appears
with frequency (1-q). For the sub-graph Loop, Lmax instances are designed, and

Start

λ1=10

m1

m3 m2

Stop

δ1=15

q 1-q

Start

λ2=12

m4

Lmax

m5

Stop

δ2=18

p

send
receive

replay

OR Loop

module is run k times for each instance (k=1,2,...,Lmax). The instance, where
module runs k times, can be met with the probability (1 - p) p k -1. There are
2Lmax instances for the task graph from Figure 4. The instance, where task m2
appears and task m5 runs k times, occurs with the probability:

pi=q(1- p) p k-1 (4)

An allocation modules to computers),(π

xx
m

 creates possibility to schedule

tasks for each computer. Let this distributed schedule be determined, as follows:

,],...,,...,[
1

T

Vv

m
NNNN =

(5)

where Nv – number of the vth module in the line for its dedicated computer.

Times of task completions (C1,...,Cv,...,CV) can be calculated for scheduled

allocation modules to computers x=),,(mm

Nxx
π

 [4]. Let dv represents the

completion deadline for the vth task. If
vv

dC ≤ , then the time constraint is

satisfied what can be written as 1)(=−
vv

Cdξ . If the deadline is exceeded,

then 0)(=−
vv

Cdξ . The state of deadline constraints regarding the ith

instance of the flow graph with the set of tasks marked Mi is determined, as
below:

∏
∈

−=

iv
Mm

vvi xCdS))((ξ

.

(6)

If at least one task exceeds the deadline, then deadline constraint for the ith
instance is not satisfied. Probability that all tasks meet their deadlines for K
instances of the flow graph is calculated:

∑ ∏
= ∈

−=

K

i Mm

vviD

iv

xCdpxP
1

))(()(ξ

.

(7)

8.5. Bottleneck of limited computer workload and specific

constrains

Chu and Lan have introduced the workload of the bottleneck computer as the
criterion for the evaluation of an allocation quality [4]. A computer with the
heaviest task load is the bottleneck machine in the system, and its workload is

a critical value that should be minimized [12]. The workload Zi
+(x) of a

computer allotted to the ith node for the allocation x is provided by the
subsequent formula:

,

1 1 11 1

2

ππ

ij
m
vi

V

v=

V

uv
u=

I

i=

vuiiij
m
vi

V

v=

I

i=

vii xxτ+xxt(x)Z ∑∑∑∑∑

≠

+
=

(8)

where
vu
τ – the total communication time between the task Tv and the Tu.

A computer with the heaviest load Zi
+(x) is the bottleneck machine in the

system, and its workload is the critical value that is supposed to be limited:

{ } .)(min lim

max
1

ZxZi
Ii

≤
+

=
(9)

The second constraint is related to the limited capacities of resources. Each
computer is supposed to be equipped with necessary capacities of resources for
a program execution. Let the following memories z1,...,zr,...,zR be available in
an entire system and let djr be denote the capacity of memory zr in the

workstation πj . We assume the module mv reserves cvr units of memory zr and
holds it during a program execution. Both values cvr and djr are nonnegative and
limited. The memory limit in any machine cannot be exceeded in the ith node,
what is written, as bellows:

.,1,,1,

11

RrIixdxc

J

j

ijjr

V

v

m
vivr ==≤∑∑

==

π

(10)

The third constraint is related to the limit cost of computers [1]:

,max

1 1

κκ ≤∑∑
= =

π
ij

I

i

J

j

jx

(11)

where κj corresponds to the cost of the computer π j.

The fourth constraint is a requirement that total amount of computer
performance is supposed to be greater than minimal value:

max

1 1

ϑϑ ≥∑∑
= =

π
ij

I

i

J

j

jx

(12)

where jϑ is the numerical performance of the computer π j for the given

benchmark.

8.6. Two-criterion optimization problem and

evolutionary approach

Let (X, F, P) be the multi-criterion optimisation question for finding the

representation of Pareto-optimal solutions. It can be established, as follows:

The relationship P is a subset of the product Y×Y, where an evaluation set

Y=F(X). If a∈Y, b∈Y, and Nnba
nn

,1, =≤ , then the pair of evaluations

(a,b)∈P. The meaning of the Pareto relationship respects the minimization of all
criteria. That is why, criteria for maximization in (13) are written with minus.

There is no task allocation a∈X such that (F(a),F(x*))∈P for the Pareto-

optimal assignment x*∈ X and a ≠ x*.

An overview of evolutionary algorithms for multiobjective optimisation
problems is submitted in [6, 13]. Some specific knowledge about the considered

1) X - an admissible solution set

|{)(VJVI
x VBX ×∈=

+ ;min
lim

max

1 1 11 1
1

2

Zxxτ+xxt
ij

m

vi

V

v=

V

uv
u=

I

i=

vuiiij

m

vi

V

v=

I

i=

vi
,Ii

≤
















∑∑∑∑∑
≠

=

ππ

;,1,,1,

11

RrIixdxc

J

j

ijjr

V

v

m
vivr ==≤∑∑

==

π

;max

1 1

κκ ≤∑∑
= =

π
ij

I

i

J

j

jx

;max

1 1

ϑϑ ≥∑∑
= =

π
ij

I

i

J

j

j x

;,1,1 VvVN
v

=≤≤ ;,1 ,1

1

Vvx

I

i

m
vi ==∑

=

 },1,1

1

Iix

J

j

ij ==∑
=

π

where B = {0, 1}, V = {1, 2,…,V}

2) F - a vector superiority criterion

2
 : RX→F , (13)

where

R – the set of real numbers,

F(x) = [–R(x), PD (x)] T for x∈X,

R(x), PD (x) are calculated by (3) and (7), respectively

3) P - the Pareto relation [3, 5].

optimization problem is applied in an evolutionary algorithm. Consequently,
a standard genetic algorithm can be used for solving the wide class of
optimization problems, but an evolutionary algorithm is rather focused on the
special class of problems [15]. However, outcomes are regularly much better for
evolutionary algorithms than for genetic algorithms [15].

In the first multi-criterion genetic algorithm called a vector evaluated genetic
algorithm VEGA, a population of solutions is divided on N subpopulations,
where N is the number of partial criteria [19]. For each nth subpopulation, the
criterion Fn is a fitness function. However, a crossover and a mutation are
carried out for the entire population. This method for a fitness evaluation has
a weakness related to the discrimination of Pareto solutions located in an
interior of the Pareto front.

Fourman has considered the selection with binary tournaments, where two
randomly chosen solutions have been compared [8]. The hierarchical alternative
is chosen and it is included to a mating pool of potential parents. A selection
probability is calculated for the most significant aim. A random choice is carried
out twice according to the roulette rule. Hierarchical tournaments push the
population towards lexicographical solutions likewise the VEGA approach.
Another selection is based on a random choice of a goal that is taken to
comparison of selected solutions. Selection probabilities are constant or they
can depend on the chosen purpose for the other tournament selection.

A ranking idea for non-dominated individuals has been introduced to avoid the
prejudice of the interior Pareto alternatives by Goldberg [10]. Srinivas and Deb
[21] have built a non-dominated sorting genetic algorithm NSGA on the ideas
mentioned by Goldberg. If some admissible solutions are in a population, then
the Pareto-optimal individuals are determined, and after that they get the rank 1.
Subsequently, they are temporary eliminated from the population. Next, the new
Pareto-optimal alternatives are found from the reduced population and they get
the rank 2. In this procedure, the level is increased and it is repeated until the set
of admissible solutions is exhausted. All non-dominated individuals have the
same reproduction fitness because of the equivalent rank.

To maintain the diversity of the population and to preclude premature
convergence, fitness-sharing techniques have been developed [6]. A mating
restriction assumes that individuals from a criteria space neighbourhood are
similar, so that they can form stable niches. If a non-dominated evaluation for
the current population has a long distance to the nearest non-dominated
evaluation and there is a niche of non-dominated results, then the separated
individual is supposed to be preferred by increasing its fitness before
individuals from the niche.

Above multi-criterion techniques are based on a genetic algorithm. Another
approach is an extension of evolution strategy. Binh and Korn have developed
a multicriteria evolution strategy for combinatorial optimization problems [3].
A new Pareto archived evolution strategy called PAES was proposed by
Knowles and Corne [13].

Zietzler and co-authors have suggested an elitist selection in their strength
Pareto evolutionary algorithm SPEA [22]. At each generation, a combined
population with the external and the current population is constructed. In an
external population, all non-dominated solutions discovered so far are archived.
An elitist selection is applied in the other elitist non-dominated sorting genetic
algorithms.

8.7. Adaptive multi-criterion evolutionary algorithm

An approach based on the genetic programming for solving multicriteria
optimization problem produces a population of algorithms that adapt
themselves to the problem. However, the name “adaptive evolutionary
algorithm” for this evolutionary algorithm is related to the changing of some
parameters as a crossover probability, a mutation rate, a population size, and the
others during the searching. According to another meaning, it is related to the
operators change as a result of the search process (i.e., population diversity, etc),
not as a function of generation. For considered algorithm, the crossover
probability is decreased due to the number of new generations.

Figure 5 shows a scheme of the adaptive multi-criterion evolutionary algorithm
called AMEA/GP that operates on the population of programs. This algorithm
permits on achieving better results for task assignment than the other tested
multiobjective evolutionary algorithms [2].

The preliminary population of programs is created in a specific manner (Fig. 5,
line 3). Each generated program consists of set of procedures and set of
attributes. Set of procedures is defined, as follows:

{ }/,-,*,,+= listF

(14)

where: list is a procedure that convert I(V+J)+V input real numbers called
activation levels on I(V+J) output binary numbers:

ππππππ

IJIjIijJ

m

VI

m

vi

m

I

m
xxxxxxxxxx ,...,,...,,...,,...,,...,,,...,,...,,...,

1111111

and V are output integer numbers

Vv NNN ,...,,...,

1
.

The procedure list is obligatory the root of the program tree and appears only
one in a generated program. An activation level is a root for the sub-tree that is
randomly generated with using arithmetic operators {+, -, *, /} and the set of

terminals. Let D be the set of numbers that consists of the given data for the

solved instance. A terminal set is determined for each instance of the problem,
as below:

,LDT ∪=

(15)

where
 L

–

set of n random numbers D=n

If x calculated by the program is admissible, then the fitness function value (Lst.
8.1, line 4) is estimated, as below:

,1)()(
maxmax

++−= Pxrrxf

(16)

where r(x) denotes the rank of an admissible solution,
max

)(1 rxr ≤≤ .

Lst. 8.1. Adaptive multicriteria evolutionary algorithm for genetic

programming

Another ranking procedure has been introduced by Fonseca and Fleming [6]. It
assigns each individual a rank based on the number of other individuals by
which it is dominated. A niching procedure modifies these ranks. The surface

1. BEGIN
2. t:=0, set the even size of population L, pm:=1/M, M – the length of solution
3. generate initial population of programs P(t), t – the number of population

4. run programs, calculate ranks r(x) and fitness)(),(txxf P∈

5. finish:=FALSE
6. WHILE NOT finish DO
7. BEGIN /* new population */

8. t:= t+1, ∅=:)(tP

9. calculate selection probabilities),(xp
s

)1(−∈ tPx

10. FOR L/2 DO
11. BEGIN /* reproduction cycle */
12. 2WT-selection of a potential parent pair (a,b) from the population P(t-
1)
13. S-crossover of a parent pair (a,b) with the adaptive crossover rate pc,

max
/

:
Tt

c ep
−

=

14. S-mutation of an offspring pair (a',b') with the mutation rate pm

15. P(t):=P(t)∪(a',b'}
16. END

17. calculate ranks r(x) and fitness)(),(txxf P∈

18. IF (P(t) converges OR t≥Tmax) THEN finish:=TRUE
19. END
20. END

region of the Pareto front is divided by the size of the population. The number
of other member’s falling within the sub-area of any individual is taken to
establish the niching penalty for it [6].

In the two-weight tournament selection (Fig. 5, line 12), the roulette rule is
carried out twice. If two potential parents (a, b) are admissible, then
a dominated individual is eliminated. If two solutions non-dominate each other,
then they are accepted. If potential parents (a, b) are non-admissible, then an
alternative with the smaller penalty is selected.

The fitness sharing technique can be substituted by the adaptive changing of
main parameters. The quality of attained solutions increases in optimization
problems with one criterion, if the crossover probability and the mutation rate
are changed in an adaptive way proposed by Sheble and Britting [20]. The
crossover point is randomly chosen for the chromosome X in the S-crossover
operator (Fig. 1, line 13). The crossover probability is 1 at the initial population
and each pair of potential parents is obligatory taken for the crossover
procedure.

A crossover operation supports the finding of a high-quality solution area in the
search space. It is important in the early search stage. If the number of
generation t increases, the crossover probability decreases according to the

formula .

max
/Tt

c ep
−

= The search region or some search areas are identified

after several crossover operations on parent pairs. That is why, value pc is
smaller and it is equal to 0.6065, if t =100 for maximum number of population
Tmax=200. The final smallest value pc is 0.3679. A crossover probability
decreases from 1 to exp(-1), exponentially.

In S-mutation (Fig. 5, line 14), the random swap of the integer value by another

one from a feasible discrete set is applied. If the gene m

v
X is randomly taken

for mutation, the value is taken from the set }.,...,1{ I If the gene π

iX is

randomly chosen, the value is selected from the set }.,...,1{ J A mutation rate is

constant in the AMEA and it is equal to 1/M, where M represents the number of
decision variables.

8.8. Level of convergence to Pareto front and tabu

mutation

The AMEA/GP is able to find task assignment representation for several
numerical instances of multiobjective optimization problem (13) that was
confirmed by extended simulations. Quality of obtained solutions can be
assessed by a level of convergence to the Pareto front [1].

Let the Pareto points {P1, P2,..., PU} be given for any instance of the task
assignment problem (13). If the AMEA/GP finds the efficient point (Au1, Pu2)

for the probability that tasks meet deadlines Pu2, this point is associated to the
uth Pareto result (Pu1, Pu2) with the same value of probability.

The distance between points (Au1, Pu2) and (Pu1, Pu2) is calculated according to

an expression
11 uu

AP − . If the point (Au1, Pu2) is not discovered by the

algorithm, we assume the distance is
min

11 uu
AP − , where

min

1uA is the minimal

reliability of the system for the instance of problem (13).

The level of convergence to the Pareto front is calculated, as follows:

∑
=

−=

U

u

uu
APS

1

11
. (17)

An average level S is calculated for several runs of the evolutionary algorithm.

Initial numerical examples indicated that obtained task assignments had higher
value of the workload of the bottleneck computer than the limit for some
instances with the number of tasks larger than 15. We suggest reducing this
disadvantage by an introduction a tabu algorithm [9] (Lst. 8.2) as an advanced
additional mutation operator to decrease the minimum value of a workload of
the bottleneck computer. According to this concept, to the line 14 (Lst. 8.1)
should be added a new procedure, as follows:

14 b) Tabu-mutation of an offspring pair (a',b') with the constant tabu-
mutation probability ptabu

The adaptive multicriteria evolutionary algorithm AMEA/GP with a tabu
mutation is a hybrid optimization technique that combines advantages of
a programming genetic search with a tabu search. In a tabu search special areas
are forbidden during the seeking in a space of all possible combinations. Tabu
search can be treated as a general combinatorial optimization technique for
using in zero-one programming, non-convex non-linear programming, and
general mixed integer optimization.

Tabu search uses memory structures by reference to dimensions consisting of
recency, frequency, quality and influence [11]. It inherits from a simple descent
method an idea of a neighborhood N(xnow) of a current solution xnow. In our
hybrid method, the initial task assignment is randomly chosen from the
population with the small rate ptabu= 0.01pm. From this neighborhood, we can
choose the next solution xnext to a search trajectory. The accepted alternative is
supposed to have the best value of an objective function among the current
neighborhood. However, the descent method terminates its searching, when the
chosen candidate is worse than the best one from the searching trajectory.

Lst. 8.2. Tabu search algorithm for minimization of the bottleneck

computer load programming

1. Initial procedure k:=0

(A) Random selection xnow from the current population P(t)

(B) xbest := xnow , xbis:= xnow

(C) best_Zmax:=Zmax(x
now)

(D) Initialization of restriction matrixes H R, G R

(E) λ1:= V(I-1)/4, λ2:= I(J-1)/4

2. Task assignment selection and stop criterion (main iteration) k:=k+1

(A) Finding a set of candidates K (H R, xnow) from the neighborhood N(xnow)

(B) Selection of the next solution xnext∈ K (H4R, xnow) with the minimal value of the

selection function W among solutions taken from K

(C) Aspiration condition. If all solutions from the neighbourhood are tabu-active and

best_Zmax≥Zmax(x
now), then xbest := xnow, best_Zmax:=Zmax(x

now)

(D) Re-linking of search trajectory. If xnext was not changed during main iteration, then

crossover procedure for parents xbest, xbis is performed. A child with the smaller value of

Zmax is xnext, and another one is xbis

(E) If k = 0.4 Kmax, then λ1= 1,25 V (I - 1), λ1= 1,25 I (J - 1)
(F) If k = Kmax or assumed time of calculation is exceeded, then STOP.

3. Updating

(A) xnow := xnext

(B) If Zmax(x
now) < best_Zmax, then xbis := xbest and go to 1(B)

(C) If vth task was moved at the kth iteration from the nth node to the ith, then H R:= H R –1,

hvi:= λ1, hvn:= λ1/2

(D) If the qth computer sort is exchanged on the jth one at the ith node, then G R:= G R –1,

g
ij

:= λ2, g
iq

:= λ2/2

(E) go to 2

In the tabu search algorithm based on the short-term memory, a basic
neighborhood N(xnow) of a current solution may be reduced to a considered

neighborhood K (xnow) because of the maintaining a selective history of the

states encountered during the exploration. Some solutions, which were visited
during the given last term, are excluded from the basic neighborhood according
to the tabu classification of movements. If any solutions performs aspiration
criterion, then it can be included to the considered neighborhood, only.

Hansen has proposed a multiobjective optimization tabu search MOTS [11] to
generate non-dominated alternatives. The MOTS works with a population of
solutions, which, through manipulation of weights, are moved towards the
Pareto front [11]. However, the MOTS do not cooperate with an evolutionary
algorithm.

A tabu-mutation is implemented as the tabu algorithm TSZmax [2] that has
been designed to find the task assignment with the minimum value of the
function Zmax . Fig. 8.5 shows the process of the minimization Zmax from the
initial value equal to 62 time units to 32. The task assignment with the value 62
was randomly taken from the current population with the probability ptabu . An
outcome is inserted to the new population.

0 10 20 30 40 50 60 70
30

35

40

45

50

55

60

65

Fig. 8.5. Minimization of the bottleneck computer workload by the tabu

mutation

Better outcomes from the tabu mutation are transformed into improving of
solution quality obtained by the adaptive multicriteria evolutionary algorithm
with tabu mutation AMEA/GP+. This adaptive evolutionary algorithm gives
better results than the AMEA/GP (Fig. 8.6). After 200 generations, an average
level of Pareto set obtaining is 1.8% for the AMEA/GP+, 3.4% for the
AMEA/GP. 30 test preliminary populations were prepared, and each algorithm
starts 30 times from these populations. For integer constrained coding of
chromosomes there are 12 decision variables in the test optimization problem.
The search space consists of 25 600 solutions.

For the other instance with 15 tasks, 4 nodes, and 5 computer sorts there are 80
binary decision variables. An average level of convergence to the Pareto set is
16.7% for the AMEA/GP+ and 18.4% for the AMEA/GP. A maximal level is
28.5% for the AMEA/GP+ and 29.6% for the AMEA/GP. For this instance the
average number of optimal solutions is 19.5% for the AMEA/GP+ and 21.1%
for the AMEA/GP.

An average level of convergence to the Pareto set, an maximal level, and the
average number of optimal solutions become worse, when the number of task,
number of nodes, and number of computer types increase. An average level is
34.6% for the AMEA/GP+ versus 35,7% for the AMEA/GP, if the instance
includes 50 tasks, 4 nodes, 5 computer types and also 220 binary decision
variables.

Z max

[TU]

k

Fig. 8.6. Outcome convergence for the AMEA/GP+ and the AMEA/GP

8.9. Concluding remarks

Genetic programming is relatively new paradigm of artificial intelligence that
can be used for finding task assignment and scheduling for the Comcute grid
system. A computer program as a chromosome is a subject of genetic operators
such as recombination, crossover and mutation. It gives possibility to represent
knowledge that is specific to the problem in more intelligent way than for the
data structure. That is, we process the potential ways of finding solution not the
possible solutions.

Our initial numerical experiments confirm that feasible, sub-optimal in Pareto
sense, task assignments can be found by genetic programming. Although, the
quality of obtained task assignment is a little better than the solution determined
by an evolutionary algorithm, a paradigm of genetic programming gives
opportunity to solve this problem for changeable environment.

Our future works will focus on testing the other sets of procedures and
terminals to find the Pareto-optimal task assignments for distinguish criteria and
constraints. Moreover, we will concern on a development the combination
between tabu search and evolutionary algorithms for finding Pareto-optimal
solutions.

References

1. Balicki J.: Immune systems in multi-criterion evolutionary algorithm for

task assignments in distributed computer system. LNCS, Vol. 3528, 2005,

pp. 51-56.

9,1

4,2

1,8

12,3

6,1

3,3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

50 75 100 125 150 175 200

AMEA/GP+

AMEA/GP

t

2. Balicki J.: An adaptive quantum-based multi-objective evolutionary

algorithm for efficient task assignment in distributed systems, Proc. of The

WSEAS Int. Conf. on Computers, July 22-26, 2009, Rodos Island, Greece,

WSEAS Press, pp. 417-422.

3. Binh, T. T., Korn, U.: Multiobjective Evolution Strategy for Constrained

Optimisation Problems. Proceedings of the 15th IMACS World Congress

on Scientific Computation, Modelling and Applied Mathematics, Berlin

(1997), 357-362

4. Chu, W. W., Lan, L. M. T.: Task Allocation and Precedence Relations for

Distributed Real-Time Systems. IEEE Transactions on Computers, Vol. C-

36, No. 6 (1987) 667-679

5. Coello Coello C. A.: A Comprehensive Survey of Evolutionary-Based

Multiobjective Optimisation Techniques. Knowledge and Information

Systems. An International Journal, Vol. 1 (1999) 269-308

6. Fonseca, C. M., Fleming, P. J.: An Overview of Evolutionary Algorithms

in Multiobjective Optimisation, Evolutionary Computation, Vol. 3, No. 1

(1995) 1-16

7. Foster I., Kesselman C, Tuecke S., The anatomy of the grid: Enabling

scalable virtual organizations, Int. J. High Perform. Comput. Appl., 15(3),

August 2001, pp. 200-222.

8. Fourman, M. P.: Compaction of Symbolic Layout Using Genetic

Algorithms. Proceedings of the First International Conference on Genetic

Algorithms, Hillsdale (1985) 141-153

9. Glover F., Laguna M.: Tabu Search. Kluwer Academic Publishers, Boston

(1997)

10. Goldberg, D. E.: Genetic Algorithms in Search, Optimisation, and Machine

Learning. Addison-Wesley Publishing Company, Massachusetts (1989)

11. Hansen M. P.: Tabu Search for Multicriteria Optimisation: MOTS.

Proceedings of the Multi Criteria Decision Making, Cape Town, South

Africa (1997)

12. Kafil, M. Ahmad, I.: Optimal Task Assignment in Heterogeneous

Distributed Computing Systems. IEEE Concurrency, Vol. 6, No. 3 (1998)

42 - 51

13. Knowles, J., Corne, D. W.: Approximating the Nondominated Front Using

the Pareto Archived Evolution Strategy. Evolutionary Computation, Vol. 8,

No. 2 (2000) 149-172

14. Koza J.R.: Genetic programming. The MIT Press, Cambridge (1992)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution

Programs. Springer Verlag, Berlin Heidelberg New York (1996)

16. Murthy, I., Seo, P. K.: A Dual-Descent Procedure for The File Allocation

and Join Site Selection Problem on a Telecommunications Network. An

International Journal Networks, Vol. 33, No. 2 (1999) 109-123

17. Nedjah N., A. Abraham, Luiza de Macedo Mourelle, Genetic Systems

Programming: Theory and Experiences, Springer Verlag, New York 2009.

18. Russell S. J., P. Norvig, Artificial Intelligence a modern approach, Prentice

Hall, Upper Saddle River, 2nd edition, New York 2003.

19. Schaffer, J. D.: Multiple Objective Optimisation with Vector Evaluated

Genetic Algorithm. Proceedings of the First International Conference on

Genetic Algorithms, Hillsdale, (1985) 93-100

20. Sheble, G. B., Britting, K.: Refined Genetic Algorithm – Economic

Dispatch Example. IEEE Transactions on Power Systems, Vol. 10, No. 2

(1995) 117-124

21. Srinivas N., Deb K.: Multiobjective optimisation using nondominated

sorting in genetic algorithms. Evolutionary Computation, Vol. 2, No. 3,

1994, pp. 221-248.

22. Zitzler, E., Deb, K., and Thiele, L.: Comparison of multiobjective

evolutionary algorithms: empirical results. Evolutionary Computation, Vol.

8, No. 2, pp. 2000, pp. 173-195.

