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Abstract 

In this chapter, a genetic programming paradigm is implemented for reliability 

optimization in the Comcute grid system design. Chromosomes are generated as 

the program functions and then genetic operators are applied for finding 

Pareto-suboptimal task assignment and scheduling. Results are compared with 

outcomes obtained by an adaptive evolutionary algorithm. 
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genetic algorithm, workload balancing 

8.1. Introduction 

In the Comcute system, several tasks are performed concurrently by three 
ordered levels of the support software modules. This middleware consists of 
some modules that are dedicated to different system nodes. So, the question is 
how assign system modules to nodes to obtain some advantages for the whole 
grid [7]. 

A workload balancing and the total cost of a program run in a grid computer 
like the Comcute may be reduced by the task assignment and the scheduling [1]. 
Moreover, it is possible to decrease the cost of computers if a selection of the 
computer sort is carried out. A total amount of the system performance is 
another measure that can be minimized by task distribution and scheduling [16].  

The probability that all computers remain fault-free during the execution of the 
modules assigned to computers is important criterion of evaluation task 



assignments. In real-time systems that are preferred for some anti-crisis 
dilemmas, a required time of response is supposed to be guaranteed. In this 
case, time precedence between concurrent tasks play important role.  Therefore, 
the second important criterion is the probability that tasks are completed on 
time.  

A problem of task allocation can be formulated as a multiobjective 
combinatorial optimization question, which is solved by an approach based on 
genetic programming. It is applied for finding the subset of Pareto-optimal 
solutions. 

Genetic algorithms, evolutionary algorithms, evolution strategies and genetic 
programming are the alternative evolutionary approaches to the modern 
metaheuristic multicriteria optimization methods such as simulated annealing, 
tabu search or Hopfield models of neural networks. Evolutionary calculations 
deal simultaneously with a population of possible solutions, which allows 
finding a subset of Pareto optimal solutions by one algorithm run, instead of 
having to perform a number of separate runs of standard multiobjective 
optimization techniques. Moreover, evolutionary approaches give outcomes 
with good quality for different instances of multiobjective problems and can be 
considered as a robust optimization technique. From these reasons evolution 
approaches are convenient if we look for the subset of Pareto-optimal solutions.  

8.2. Genetic programming rules 

Genetic programming is a remarkable paradigm of an artificial intelligence. 
A theory of genetic programming has been created by John R. Koza of the 
Computer Science Department of Stanford University [14]. Solutions to several 
problems have been found for instances from different areas like optimal 
control, planning, sequence induction, symbolic regression, automatic 
programming or discovering a game playing strategy. Furthermore, problems 
related to empirical discovering and forecasting, symbolic integration or 
differentiation, discovering mathematical identities, classification and decision 
tree induction, evolution of emergent behavior and also automatic programming 
of cellular automata are on the list of problems that have been solved 
successfully by genetic programming [17].  

Although, several different problems have been taken into account, finding task 
assignment by genetic programming is a new scientific challenge [18]. Fig. 8.1 
shows an example of a tree of the computer program performance.  

This tree corresponds to the program written in the LISP language, as follows: 

(LT (+ –3 x) (* v (SQRT v))) 

 



 

Fig. 8.1. Tree as a model of the computer program 

 

Above program calculates both the value –2x and vv , and then compare –2x 

to vv . If  –2x is smaller than vv , then an outcome of the LISP procedure 

is equal to 1. In the other case, the result is –1, because the function LT is 
defined in such a way.  

This tree is equivalent to the parse tree that most compilers construct internally 
to represent the given computer program. If a computer program was 
represented by any algorithm diagram, genetic operators like reproduction, 
crossover or mutation would be difficult to implementation. That is, a tree is 
a relevant model of chromosome that can be transformed by removing a sub-
tree or exchanging two sub-trees.  

Despite the data structure represents a chromosome in an evolutionary 
algorithm [11], a chromosome for genetic programming is the tree of 
a computer program. The simplest procedure differs from a complex data 
structure significantly. The procedure can be used to calculation that gives 
ability to represent not only knowledge about a problem and also it gives 
possibility to draw conclusions or to process data in the way difficult to 
discover. That is, a computer program may find a solution to the problem and 
a genetic algorithm without an aid of computer programmer can be able to 
construct this procedure. 

Generation of the trees is an important step for finding Pareto-optimal task 
assignments. The size of the generated tree is supposed to be limited by the 
number of nodes or by the number of the tree levels. The tree nodes are divided 
on functional nodes and terminal ones. A functional node represents an 
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elementary procedure randomly chosen from the primary defined set of 
functions: 

{ }Nn fff ,...,,...,1=F
 

(1) 

Each function should be able to accept, as its arguments, any value and data 
type that may possible be returned by the other procedure [2]. Because 
a procedure is randomly chosen from the set, and then it is returned, each 
function ought to be able to accept, as its arguments, any value and data type 
that may possible be returned by itself, too. Moreover, each procedure is 
supposed to be capable to allow any value and data type that may possible be 
assumed by any terminal selected from the following terminal set:  

{ }Mm aaa ,...,,...,1=T
 

(2) 

An above property of the procedure is called a closure property because each 
function should be well defined and closed for any arrangement of arguments 
that it may come across.  

Another property of a set of procedures, called the sufficiency property, requires 
that the solution to the problem should be expressed by the any combination of 
the procedures from the set of functions and the arguments from the set of 

terminals. For example, the set of functions { }NOTORAND ,,=F  is 

sufficient to articulate any Boolean function. If the logical operator AND is 
removed from this set, the remaining procedure set is still satisfactory for 

realizing any Boolean function. In addition, a sufficient set is { }NOTAND ,
 as 

well.  

8.3. Computer and channel failures in a grid system 

We assume that computers and communication channels may failure during 
data processing. The fault-tolerant system is able to deal with failures of its 
elements during the execution of task modules assigned to computers and for 
the generated communication. Each computer and each link between them are 
assumed to fail independently with exponential rates. We do not take into 
account of repair and recovery times for failed computers in assessing the 
logical correctness of an allocation. Instead, we shall allocate modules to 
computers on which failures are least likely to occur during the execution of 
task modules. That is, we are supposed to assign modules with maximum 
reliability and thus eliminate the need of on-line repair and recovery.  

To guard against the unlikely failures of these computers, one can assign copies 
of a module to multiple computers, but this subject is not the scope of this 
paper. The rationale behind the above assumption is that repair and recovery 
times are largely implementation-dependent. Moreover, repair and recovery 



routines usually introduce too high time overheads to be used on-line for time-
critical applications. 

A set of program modules {M1,...,Mm,...,MM} communicated to each other’s is 
considered among the coherent computer network with computers located at the 

processing nodes from the set },...,,...,{
1 Ii

wwwW = . A program module 

can be activated several times during the program lifetime and with the program 
module runs are associated some processes (tasks). In results, a set of program 
modules is mapped into the set of parallel performing tasks {T1,...,Tv,...,TV}.  

Let the task Tv be executed on computers taken from the set of available 

computer sorts },...,,...,{ 1 Jj πππ=Π . The overhead performing time of the 

task Tv by the computer πj is represented by vjt . Let a computer jπ  be failed 

independently due to an exponential distribution with rate jλ . The longer time 

of task execution, the higher probability of computer failure. Computers can be 
allocated to nodes and also tasks can be assigned to them in purpose to 
maximize the reliability function R defined, as below [2]: 
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A computer can be chosen several times from the set Π  to be assigned to the 
node wi and one computer is allocated to each node. On the other hand, each 
task is allocated to any node. 

Fig. 8.2 shows a relation between the reliability Rj of computer and parameter 
λj.=0.001 [TU-1, TU – time unit].        

 



 

Fig. 8.2. Reliability of an individual computer node 

If there are two computer nodes with λ1.=0.001 [TU-1] and λ2.=0.002 [TU-1], the 
reliability of the two-computer system decreases faster than the reliabilities for 
each of them. Fig. 8.3 shows the relation between the measure of system 
reliability R and time of using this system for the chosen two-computer system. 

 

Fig. 8.3. The reliability of the two-computer system 

 

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rj 

time [TU] 

R 

time [TU] 

λ1 

λ2 

λ1&λ2 



8.4. Probability of deadline meetings for the tasks 

The precedence constraints among modules are figured in calculation of module 
release time and the timing constraints on modules are considered then 
probability PD that all tasks meet their deadlines is evaluated. If a task misses its 
deadline under the given allocation modules, then this probability is equal to 
zero.  

Let the distributed program Pn may begin its running after λn and complete 

before δn. A task flow graph characterizes the logical structure of program 
performance. The precedence constraints among modules and the timing 
constraints can be presented on the task flow graph. Fig. 8.4 shows an example 
of the task flow graph for two programs divided on five modules. 

 

Fig. 8.4. The task flow graph for two programs divided on five modules 

Task m2 is performed with the probability q in a sub-graph denoted as OR 
(Fig. 4) and task m3 – with the probability (1-q). Task may be performed at the 
most Lmax times in a sub-graph denoted as Loop, and each repetition of this 
module is performed with the probability p.   

The task flow graph is split on some instances to schedule tasks if the sub-graph 
OR appears. For example, the first instance incorporates the module m2 instead 
the sub-graph OR and this instance emerges with frequency q. The second 
instance incorporates the module m3 instead the sub-graph OR and it appears 
with frequency (1-q). For the sub-graph Loop, Lmax instances are designed, and 

  

Start 

λ1=10 

m1 

m3 m2 

Stop 

δ1=15 

q 1-q 

Start 

λ2=12 

m4 

Lmax 

m5 

Stop 

δ2=18 

p 

send 
receive 

replay 

OR Loop 



module is run k times for each instance (k=1,2,...,Lmax). The instance, where 
module runs k times, can be met with the probability (1 - p) p k -1. There are 
2Lmax instances for the task graph from Figure 4. The instance, where task m2 
appears and task m5 runs k times, occurs with the probability: 

pi=q(1- p) p k-1 (4) 

An allocation modules to computers ),( π

xx
m

 creates possibility to schedule 

tasks for each computer. Let this distributed schedule be determined, as follows: 
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1

T

Vv

m
NNNN =

 
(5) 

where Nv – number of the vth module in the line for its dedicated computer. 

Times of task completions (C1,...,Cv,...,CV) can be calculated for scheduled 

allocation modules to computers x= ),,( mm

Nxx
π

 [4]. Let dv represents the 

completion deadline for the vth task. If 
vv

dC ≤ , then the time constraint is 

satisfied what can be written as 1)( =−
vv

Cdξ . If the deadline is exceeded, 

then 0)( =−
vv

Cdξ . The state of deadline constraints regarding the ith 

instance of the flow graph with the set of tasks marked Mi is determined, as 
below: 
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If at least one task exceeds the deadline, then deadline constraint for the ith 
instance is not satisfied. Probability that all tasks meet their deadlines for K 
instances of the flow graph is calculated:  

∑ ∏
= ∈

−=

K

i Mm

vviD

iv

xCdpxP
1

))(()( ξ

. 

(7) 

8.5. Bottleneck of limited computer workload and specific 

constrains 

Chu and Lan have introduced the workload of the bottleneck computer as the 
criterion for the evaluation of an allocation quality [4]. A computer with the 
heaviest task load is the bottleneck machine in the system, and its workload is 



a critical value that should be minimized [12]. The workload Zi
+(x) of a 

computer allotted to the ith node for the allocation x is provided by the 
subsequent formula: 
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where  
vu
τ – the total communication time between the task Tv and the Tu. 

A computer with the heaviest load Zi
+(x) is the bottleneck machine in the 

system, and its workload is the critical value that is supposed to be limited: 

{ } .)(min lim

max
1

ZxZi
Ii

≤
+

=  
(9) 

The second constraint is related to the limited capacities of resources. Each 
computer is supposed to be equipped with necessary capacities of resources for 
a program execution. Let the following memories z1,...,zr,...,zR be available in 
an entire system and let djr be denote the capacity of memory zr in the 

workstation πj . We assume the module mv reserves cvr units of memory zr and 
holds it during a program execution. Both values cvr and djr are nonnegative and 
limited. The memory limit in any machine cannot be exceeded in the ith node, 
what is written, as bellows:  
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The third constraint is related to the limit cost of computers [1]: 
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where κj corresponds to the cost of the computer π j.  

The fourth constraint is a requirement that total amount of computer 
performance is supposed to be greater than minimal value: 

max

1 1

ϑϑ ≥∑∑
= =

π
ij

I

i

J

j

jx

 

(12) 



where jϑ  is the numerical performance of the computer π j for the given 

benchmark.  

8.6. Two-criterion optimization problem and 

evolutionary approach 

Let (X, F, P) be the multi-criterion optimisation question for finding the 

representation of Pareto-optimal solutions. It can be established, as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relationship P is a subset of the product Y×Y, where an evaluation set 

Y=F(X). If a∈Y, b∈Y, and Nnba
nn

,1, =≤ , then the pair of evaluations 

(a,b)∈P. The meaning of the Pareto relationship respects the minimization of all 
criteria. That is why, criteria for maximization in (13) are written with minus.  

There is no task allocation a∈X such that (F(a),F(x*))∈P for the Pareto-

optimal assignment x*∈ X  and a ≠ x*. 

An overview of evolutionary algorithms for multiobjective optimisation 
problems is submitted in [6, 13]. Some specific knowledge about the considered 
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where B = {0, 1}, V = {1, 2,…,V} 

2) F - a vector superiority criterion 

2
   : RX→F  ,                                           (13) 

where 

R  – the set of real numbers, 

F(x) = [–R(x), PD (x)] T for x∈X, 

R(x), PD (x) are calculated by (3) and (7), respectively 

3) P - the Pareto relation [3, 5]. 

 



optimization problem is applied in an evolutionary algorithm. Consequently, 
a standard genetic algorithm can be used for solving the wide class of 
optimization problems, but an evolutionary algorithm is rather focused on the 
special class of problems [15]. However, outcomes are regularly much better for 
evolutionary algorithms than for genetic algorithms [15]. 

In the first multi-criterion genetic algorithm called a vector evaluated genetic 
algorithm VEGA, a population of solutions is divided on N subpopulations, 
where N is the number of partial criteria [19]. For each nth subpopulation, the 
criterion Fn is a fitness function. However, a crossover and a mutation are 
carried out for the entire population. This method for a fitness evaluation has 
a weakness related to the discrimination of Pareto solutions located in an 
interior of the Pareto front.  

Fourman has considered the selection with binary tournaments, where two 
randomly chosen solutions have been compared [8]. The hierarchical alternative 
is chosen and it is included to a mating pool of potential parents. A selection 
probability is calculated for the most significant aim. A random choice is carried 
out twice according to the roulette rule. Hierarchical tournaments push the 
population towards lexicographical solutions likewise the VEGA approach. 
Another selection is based on a random choice of a goal that is taken to 
comparison of selected solutions. Selection probabilities are constant or they 
can depend on the chosen purpose for the other tournament selection.  

A ranking idea for non-dominated individuals has been introduced to avoid the 
prejudice of the interior Pareto alternatives by Goldberg [10]. Srinivas and Deb 
[21] have built a non-dominated sorting genetic algorithm NSGA on the ideas 
mentioned by Goldberg. If some admissible solutions are in a population, then 
the Pareto-optimal individuals are determined, and after that they get the rank 1. 
Subsequently, they are temporary eliminated from the population. Next, the new 
Pareto-optimal alternatives are found from the reduced population and they get 
the rank 2. In this procedure, the level is increased and it is repeated until the set 
of admissible solutions is exhausted. All non-dominated individuals have the 
same reproduction fitness because of the equivalent rank.  

To maintain the diversity of the population and to preclude premature 
convergence, fitness-sharing techniques have been developed [6]. A mating 
restriction assumes that individuals from a criteria space neighbourhood are 
similar, so that they can form stable niches. If a non-dominated evaluation for 
the current population has a long distance to the nearest non-dominated 
evaluation and there is a niche of non-dominated results, then the separated 
individual is supposed to be preferred by increasing its fitness before 
individuals from the niche.  

Above multi-criterion techniques are based on a genetic algorithm. Another 
approach is an extension of evolution strategy. Binh and Korn have developed 
a multicriteria evolution strategy for combinatorial optimization problems [3]. 
A new Pareto archived evolution strategy called PAES was proposed by 
Knowles and Corne [13]. 



Zietzler and co-authors have suggested an elitist selection in their strength 
Pareto evolutionary algorithm SPEA [22]. At each generation, a combined 
population with the external and the current population is constructed. In an 
external population, all non-dominated solutions discovered so far are archived. 
An elitist selection is applied in the other elitist non-dominated sorting genetic 
algorithms.   

8.7. Adaptive multi-criterion evolutionary algorithm 

An approach based on the genetic programming for solving multicriteria 
optimization problem produces a population of algorithms that adapt 
themselves to the problem. However, the name “adaptive evolutionary 
algorithm” for this evolutionary algorithm is related to the changing of some 
parameters as a crossover probability, a mutation rate, a population size, and the 
others during the searching. According to another meaning, it is related to the 
operators change as a result of the search process (i.e., population diversity, etc), 
not as a function of generation. For considered algorithm, the crossover 
probability is decreased due to the number of new generations.  

Figure 5 shows a scheme of the adaptive multi-criterion evolutionary algorithm 
called AMEA/GP that operates on the population of programs. This algorithm 
permits on achieving better results for task assignment than the other tested 
multiobjective evolutionary algorithms [2].  

The preliminary population of programs is created in a specific manner (Fig. 5, 
line 3). Each generated program consists of set of procedures and set of 
attributes. Set of procedures is defined, as follows: 

{ }/,-,*,,+= listF
 

(14)
 

where: list is a procedure that convert I(V+J)+V input real numbers called 
activation levels on I(V+J) output binary numbers: 
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and V are output integer numbers 

Vv NNN ,...,,...,

1
.  

The procedure list is obligatory the root of the program tree and appears only 
one in a generated program. An activation level is a root for the sub-tree that is 
randomly generated with using arithmetic operators {+, -, *, /} and the set of 

terminals.  Let D  be the set of numbers that consists of the given data for the 

solved instance. A terminal set is determined for each instance of the problem, 
as below:

  
 



,LDT ∪=

 
(15) 

where
 L  

–
 
set of n random numbers D=n  

If x calculated by the program is admissible, then the fitness function value (Lst. 
8.1, line 4) is estimated, as below: 

,1)()(
maxmax

++−= Pxrrxf
 

(16) 

where r(x) denotes the rank of an admissible solution, 
max

)(1 rxr ≤≤ . 

Lst. 8.1. Adaptive multicriteria evolutionary algorithm for genetic 

programming 

 
 

Another ranking procedure has been introduced by Fonseca and Fleming [6]. It 
assigns each individual a rank based on the number of other individuals by 
which it is dominated. A niching procedure modifies these ranks. The surface 

1. BEGIN 
2. t:=0, set the even size of population L, pm:=1/M, M – the length of solution 
3. generate initial population of programs P(t), t – the number of population 

4. run programs, calculate ranks r(x) and fitness )(),( txxf P∈  

5. finish:=FALSE 
6. WHILE NOT finish DO 
7.     BEGIN /* new population */ 

8.     t:= t+1, ∅=:)(tP  

9.     calculate selection probabilities ),(xp
s

 )1( −∈ tPx  

10.    FOR L/2 DO 
11.   BEGIN /* reproduction cycle */ 
12.       2WT-selection of a potential parent pair (a,b) from the population P(t-
1)  
13.        S-crossover of a parent pair (a,b) with the adaptive crossover rate pc, 

max
/

:
Tt

c ep
−

=  

14.       S-mutation of an offspring pair (a',b') with the mutation rate pm 

15.       P(t):=P(t)∪(a',b'} 
16.    END 

17.    calculate ranks r(x) and fitness )(),( txxf P∈  

18.    IF (P(t) converges OR t≥Tmax) THEN finish:=TRUE 
19.    END 
20. END 
 



region of the Pareto front is divided by the size of the population. The number 
of other member’s falling within the sub-area of any individual is taken to 
establish the niching penalty for it [6]. 

In the two-weight tournament selection (Fig. 5, line 12), the roulette rule is 
carried out twice. If two potential parents (a, b) are admissible, then 
a dominated individual is eliminated. If two solutions non-dominate each other, 
then they are accepted. If potential parents (a, b) are non-admissible, then an 
alternative with the smaller penalty is selected. 

The fitness sharing technique can be substituted by the adaptive changing of 
main parameters. The quality of attained solutions increases in optimization 
problems with one criterion, if the crossover probability and the mutation rate 
are changed in an adaptive way proposed by Sheble and Britting [20]. The 
crossover point is randomly chosen for the chromosome X in the S-crossover 
operator (Fig. 1, line 13). The crossover probability is 1 at the initial population 
and each pair of potential parents is obligatory taken for the crossover 
procedure. 

A crossover operation supports the finding of a high-quality solution area in the 
search space. It is important in the early search stage. If the number of 
generation t increases, the crossover probability decreases according to the 

formula .

max
/Tt

c ep
−

=  The search region or some search areas are identified 

after several crossover operations on parent pairs. That is why, value pc is 
smaller and it is equal to 0.6065, if t =100 for maximum number of population 
Tmax=200. The final smallest value pc is 0.3679. A crossover probability 
decreases from 1 to exp(-1), exponentially. 

In S-mutation (Fig. 5, line 14), the random swap of the integer value by another 

one from a feasible discrete set is applied. If the gene m

v
X  is randomly taken 

for mutation, the value is taken from the set }.,...,1{ I  If the gene π

iX  is 

randomly chosen, the value is selected from the set }.,...,1{ J  A mutation rate is 

constant in the AMEA and it is equal to 1/M, where M represents the number of 
decision variables. 

8.8. Level of convergence to Pareto front and tabu 

mutation 

The AMEA/GP is able to find task assignment representation for several 
numerical instances of multiobjective optimization problem (13) that was 
confirmed by extended simulations. Quality of obtained solutions can be 
assessed by a level of convergence to the Pareto front [1]. 

Let the Pareto points {P1, P2,..., PU} be given for any instance of the task 
assignment problem (13). If the AMEA/GP finds the efficient point (Au1, Pu2) 



for the probability that tasks meet deadlines Pu2, this point is associated to the 
uth Pareto result (Pu1, Pu2) with the same value of probability.  

The distance between points (Au1, Pu2) and (Pu1, Pu2) is calculated according to 

an expression 
11 uu

AP − . If the point (Au1, Pu2) is not discovered by the 

algorithm, we assume the distance is 
min

11 uu
AP − , where 

min

1uA  is the minimal 

reliability of the system for the instance of problem (13).  

The level of convergence to the Pareto front is calculated, as follows: 
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An average level S  is calculated for several runs of the evolutionary algorithm. 

Initial numerical examples indicated that obtained task assignments had higher 
value of the workload of the bottleneck computer than the limit for some 
instances with the number of tasks larger than 15. We suggest reducing this 
disadvantage by an introduction a tabu algorithm [9] (Lst. 8.2) as an advanced 
additional mutation operator to decrease the minimum value of a workload of 
the bottleneck computer. According to this concept, to the line 14 (Lst. 8.1) 
should be added a new procedure, as follows: 

14 b) Tabu-mutation of an offspring pair (a',b') with the constant tabu-
mutation  probability ptabu   

The adaptive multicriteria evolutionary algorithm AMEA/GP with a tabu 
mutation is a hybrid optimization technique that combines advantages of 
a programming genetic search with a tabu search. In a tabu search special areas 
are forbidden during the seeking in a space of all possible combinations. Tabu 
search can be treated as a general combinatorial optimization technique for 
using in zero-one programming, non-convex non-linear programming, and 
general mixed integer optimization. 

Tabu search uses memory structures by reference to dimensions consisting of 
recency, frequency, quality and influence [11]. It inherits from a simple descent 
method an idea of a neighborhood N(xnow) of a current solution xnow. In our 
hybrid method, the initial task assignment is randomly chosen from the 
population with the small rate ptabu= 0.01pm. From this neighborhood, we can 
choose the next solution xnext to a search trajectory. The accepted alternative is 
supposed to have the best value of an objective function among the current 
neighborhood. However, the descent method terminates its searching, when the 
chosen candidate is worse than the best one from the searching trajectory.  

Lst. 8.2. Tabu search algorithm for minimization of the bottleneck 

computer load programming 



1. Initial procedure   k:=0 

(A) Random selection xnow from the current population P(t)  

(B)  xbest := xnow , xbis:= xnow 

(C)  best_Zmax:=Zmax( x
now) 

(D) Initialization of restriction matrixes H R, G R  

(E) λ1:= V(I-1)/4, λ2:= I(J-1)/4 

2. Task assignment selection and stop criterion (main iteration)   k:=k+1 

(A) Finding a set of candidates K (H R, xnow) from the neighborhood N(xnow) 

(B) Selection of the next solution xnext∈ K (H4R, xnow)  with the minimal value of the 

selection function W among solutions taken from K 

(C) Aspiration condition. If all solutions from the neighbourhood are tabu-active and 

best_Zmax≥Zmax( x
now), then xbest := xnow, best_Zmax:=Zmax( x

now) 

(D) Re-linking of search trajectory. If xnext  was not changed during main iteration, then 

crossover procedure for parents xbest, xbis is performed. A child with the smaller value of 

Zmax is xnext, and another one is xbis 

(E) If  k = 0.4 Kmax, then λ1= 1,25 V (I - 1),  λ1= 1,25 I (J - 1) 
(F) If  k = Kmax or assumed time of calculation is exceeded, then STOP.  

 

3. Updating 

(A) xnow := xnext 

(B) If Zmax(x
now) < best_Zmax, then xbis := xbest and go to 1(B) 

(C) If vth task was moved at the kth iteration from the nth node to the ith, then H R:= H R –1, 

hvi:= λ1, hvn:= λ1/2 

(D) If the qth computer sort is exchanged on the jth one at the ith node, then G R:= G R –1, 

g
ij

:= λ2, g
iq

:= λ2/2 

(E) go to 2 

 

In the tabu search algorithm based on the short-term memory, a basic 
neighborhood N(xnow) of a current solution may be reduced to a considered 

neighborhood K (xnow) because of the maintaining a selective history of the 

states encountered during the exploration. Some solutions, which were visited 
during the given last term, are excluded from the basic neighborhood according 
to the tabu classification of movements. If any solutions performs aspiration 
criterion, then it can be included to the considered neighborhood, only.  

Hansen has proposed a multiobjective optimization tabu search MOTS [11] to 
generate non-dominated alternatives. The MOTS works with a population of 
solutions, which, through manipulation of weights, are moved towards the 
Pareto front [11]. However, the MOTS do not cooperate with an evolutionary 
algorithm. 

A tabu-mutation is implemented as the tabu algorithm TSZmax [2] that has 
been designed to find the task assignment with the minimum value of the 
function Zmax . Fig. 8.5 shows the process of the minimization Zmax from the 
initial value equal to 62 time units to 32. The task assignment with the value 62 
was randomly taken from the current population with the probability ptabu . An 
outcome is inserted to the new population. 
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Fig. 8.5. Minimization of the bottleneck computer workload by the tabu 

mutation 

Better outcomes from the tabu mutation are transformed into improving of 
solution quality obtained by the adaptive multicriteria evolutionary algorithm 
with tabu mutation AMEA/GP+. This adaptive evolutionary algorithm gives 
better results than the AMEA/GP (Fig. 8.6). After 200 generations, an average 
level of Pareto set obtaining is 1.8% for the AMEA/GP+, 3.4% for the 
AMEA/GP. 30 test preliminary populations were prepared, and each algorithm 
starts 30 times from these populations. For integer constrained coding of 
chromosomes there are 12 decision variables in the test optimization problem. 
The search space consists of 25 600 solutions.  

For the other instance with 15 tasks, 4 nodes, and 5 computer sorts there are 80 
binary decision variables. An average level of convergence to the Pareto set is 
16.7% for the AMEA/GP+ and 18.4% for the AMEA/GP. A maximal level is 
28.5% for the AMEA/GP+ and 29.6% for the AMEA/GP. For this instance the 
average number of optimal solutions is 19.5% for the AMEA/GP+ and 21.1% 
for the AMEA/GP. 

An average level of convergence to the Pareto set, an maximal level, and the 
average number of optimal solutions become worse, when the number of task, 
number of nodes, and number of computer types increase. An average level is 
34.6% for the AMEA/GP+ versus 35,7% for the AMEA/GP, if the instance 
includes 50 tasks, 4 nodes, 5 computer types and also 220 binary decision 
variables.  

 

Z max 

[ TU ] 

k 



 

Fig. 8.6. Outcome convergence for the AMEA/GP+ and the AMEA/GP  

8.9. Concluding remarks 

Genetic programming is relatively new paradigm of artificial intelligence that 
can be used for finding task assignment and scheduling for the Comcute grid 
system. A computer program as a chromosome is a subject of genetic operators 
such as recombination, crossover and mutation. It gives possibility to represent 
knowledge that is specific to the problem in more intelligent way than for the 
data structure. That is, we process the potential ways of finding solution not the 
possible solutions.  

Our initial numerical experiments confirm that feasible, sub-optimal in Pareto 
sense, task assignments can be found by genetic programming. Although, the 
quality of obtained task assignment is a little better than the solution determined 
by an evolutionary algorithm, a paradigm of genetic programming gives 
opportunity to solve this problem for changeable environment.  

Our future works will focus on testing the other sets of procedures and 
terminals to find the Pareto-optimal task assignments for distinguish criteria and 
constraints. Moreover, we will concern on a development the combination 
between tabu search and evolutionary algorithms for finding Pareto-optimal 
solutions.  
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